User-Defined Functions |251

4 , .
Modular Programming

Modular programming is a strategy applied to the design and development of
software systems. It is defined as organizing a large program into small, inde-
pendent program segments called modules that are separately named and indi-
vidually callable program units. These modules are carefully integrated to be-
come a software system that satisfies the system requirements. It is basically a
"divide-and-conquer” approach to problem solving.

Modules are identified and designed such that they can be organized into a
top-down hierarchical structure (similar to an organization chart). In C, each
module refers to a function that is responsible for a single task.

Some characteristics of modular programming are:

1. Each module should do only one thing.
2. Communication between modules is allowed onty by a calling module.
3. A module can be called by one and only one higher module.
4. No communication can take place directly between modules that do not
have calling-called relationship.
G 5. All modules are designed as single-entry, single-exit systems using control
structures. J

2.4 BELEMENTS OF USER-DEFINED FUNCTIONS

We have discussed and used a variety of data types and variables in our programs so far. However,
declaration and use of these variables were primarily done inside the main function. As we men-
tioned in Chapter 4. functions are classified as one of the derived data types in C. We can therefore
define functions and use them like any other variables in C programs. It is therefore not a surprise to
note that there exist some similarities between functions and variables in C.
e Both function names and variable names are considered identifiers and therefore they must
adhere to the rules for identifiers.
s Like variables, functions have types (such as int) associated with them.
» Like variables. function names and their types must be declared and defined before they are
used in a program.
[n order to make use of a user-defined function, we need to establish three elements that are related to
functions. .
1. Function definition
2. Function call
3. Function declaration
The function definition is an independent program module that is specially written to implement
the requirements of the function. In order to use this function we need to invoke it at a required place
in the program. This is known as the function call. The program (or a function) that calls the function
is referred to as the calling program or calling function. The calling program should declare any

252 I Programming in ANSI C

function (like declaration of a variable) that is to be used later in the program. This is known as the
Sfunction declaration or function prototype.

9.5 DEFINITION OF FUNCTIONS

A function definition, also known as function implementation shall include the following elements.
1. Function name
Function type
List of parameters
Local variable declarations
Function statements
6. A return statement
All the six elements are grouped into two parts, namely,
» Function header (First three elements)
¢ Function body (Second three elements)
A general format of a function definition to implement these two parts is given below:

N AW N

function_type function name(parameter list)
{

local variable declaration;

executable statementl;

executable statement2;

return statement;

The first line

function_type function_name(parameter list)
is known as the function header and the statements within the opening and closing braces constitute
the function body, which is a compound statement.

Function Header

The function header consists of three parts: The function type (also known as return type, the func-
tion name and the formal parameter list. Note that a semicolon is not used at the end of the function
header.

Name and Type

The function type specifies the type of value (like float or double) that the function is expected to
return to the program calling the function. If the return type is not explicitly specified, C will assume
that it is an integer type. If the function is not returning anything, then we need to specify the return
type as void. Remember, void is one of the fundamental data types in C. It is a good programming
practice to code explicitly the return type, even when it is an integer. (The value returned is the
output produced by the function).

User-Defined Functions |253

The function name is any valid C identifier and therefore must follow the same rules of formation
as other variable names in C. The name should be appropriate to the task performed by the function.
However, care must be exercised to avoid duplicating library routine names or operating system
commands.

Formal Parameter List

The parameter list declares the variables that will receive the data sent by the calling program. They
serve as input data to the function to carry out the specified task. Since they represent actual input
values, they are often referred to as formal parameters. These parameters can also be used to send
values to the calling programs. This aspect will be covered later when we discuss more about func-
tions. The parameters are also known as arguments.

The parameter list contains declaration of variables separated by commas and surrounded by pa-
rentheses. Examples;

float quadratic (int a, int b, intc) {....}

double power (double x, intn) {.....}

float mul (float x, floaty) {....}

int sum (inta,intb) {....}
Remember, there is no semicolon after the closing parenthesis. Note that the declaration of parameter
variables cannot be combined. That is,

int sum (int a,b)
is illegal
A function need not always receive values from the calling program. In such cases, functions have no
formal parameters. To indicate that the parameter list is empty. we use the keyword void between the
parentheses as in ’

void printline (void)

{
}

This function neither receives any input values nor returns back any value. Many compilers accept an
empty set of parentheses, without specifying anything as in

void printline ()
But, it is a good programming style to use void to indicate a nill parameter list.

Function Body

The function body contains the declarations and statements necessary for performing the required
task. The body enclosed in braces, contains three parts, in the order given below:
1. Local declarations that specify the variables needed by the function.

2. Function statements that perform the task of the function.

3. A return statement that returns the value evaluated by the function.

If a function does not return any value (like the printline function), we can omit the return
statement. However, note that its return type should be specified as void. Again, it is nice to have a
return statement even for void functions. -

254| Programming in ANSI C

Some examples of typical function definitions are;

(a) float mul (float x, float y)
{ ,
float result; /* local variable */
result = x * y; /* computes the product */
return (result); /* returns the result */
}
(b) void sum (int a, int b)
{
printf ("sum = %s", a + b); /* no local variables */
return; /* optional */
} .
(c) void display (void)
{ /* no local variables */
printf ("No type, no parameters");
/* no return statement */
}

Note:

1. When a function reaches its return statement, the control is transferred back to the calling
program. In the absence of a return statement, the closing brace acts as a void return.

2. Alocal variable is a variable that is defined inside a function and used without having any
role in the communication between functions.

9.6 RETURN VALUES AND THEIR TYPES

As pointed out earlier, a function may or may not send back any value to the calling function. If it
does. it is done through the return statement. While it is possible to pass to the called function any
number of values, the called function can only return one value per call, at the most.
The return statement can take one of the following forms
return;
or
return(expression);
The first, the ‘plain’ return does not return any value; it acts much as the closing brace of the
function. When a return is encountered, the control is immediately passed back to the calling func-
tion. An example of the use of a simple return is as follows:
if(error) '
return;
The second form of return with an expression returns the value of the expression. For example, the
function ‘
int mul (int x, int y)
{
int p;

User-Defined Functions |255

P = x*y;
return(p);

}
returns the value of p which is the product of the values of x and y. The last two statements can be
combined into one statement as follows:

return (x*y);

A function may have more than one return statements. This situation arises when the value returned
is based on certain conditions. For example:

if(x <=0)
return(0);
else

return(l);
What type of data does a function return? All functions by default return int type data. But what
happens if a function must return some other type? We can force a function to return a particular type
of data by using a rvpe specifier in the function header as discussed earlier.

When a value is returned, it is automatically cast to the function’s type. In functions that do com-
putations using doubles, yet return ints, the returned value will be truncated to an integer. For in-
stance, the function

int product (void)
{

}

will return the value 7, only the integer part of the result.

return (2.5 * 3.0);

5.7 FUNCTION CALILS

A function can be called by simply using the function name followed by a list of actual parameters
(or arguments), if any, enclosed in parentheses. Example:

main()
{
int Y3
= mul(10,5); /* Function call */
prmtf(" 5d\n", y):
}

When the compiler encounters a function call, the control is transferred to the function mul(). This
function is then executed line by line as described and a value is returned when a return statement is
encountered. This value is assigned to y. This is illustrated below:

256| Programming in ANSIC

main ()
int y;
—— y = mul(10,5); /* call*/ ——
VN
o A X |
int mul(int x,int y)e——— |
K
int p; /*1ocal variable*/
P=x*y; /* x= 10, y = 5%/
return (p);

S i

The function call sends two integer values 10 and 5 to the function.

int mul(int x, int y) '
which are assigned to x and y respectively. The function computes the product x and y, assigns the
result to the local variable p, and then returns the value 25 to the main where it is assigned toy again.

There are many different ways to call a function. Listed below are some of the ways the function
mul can be invoked.

mul (10, 5)

mul (m, 5)

mul (10, n)

mul (m, n)

mul (m + 5, 10)

mul (10, mul(m,n))

mul (expressionl, expression2)

Note that the sixth call uses its own call as its one of the parameters. When we use expressions, they
should be evaluated to single values that can be passed as actual parameters.

A function which returns a value can be used in expressions like any other variable. Each of the
following statements is valid: .

printf("%d\n™% mul(p,q));
y = mul(p,q) / (p+q);
if (mul(m,n)>total) printf("large");
However, a function cannot be used on the right side of an assignment statement. For instance,
mul(a,b) = 15;
is invalid.

A function that does not return any value may not be used in expressions; but can be called in to
perform certain tasks specified in the function. The function printline() discussed in Section 9.3
belongs to this category. Such functions may be called in by simply stating their names as independ-
ent statements.

User-Defined Functions]257

Example:
main()
{
printline();
}

Note the presence of a semicolon at the end.

@ Function Call)

A function call is a postfix expression. The operator (. .) is at a very high level of
precedence. (See Table 3.8) Therefore, when a function call is used as a part of
an expression, it will be evaluated first, unless parentheses are used to change
the order of precedence.

In a function call, the function name is the operand and the parentheses set (. .)
which contains the actual parameters is the operator. The actual parameters
must match the function's formal parameters in type, order and number. Multi-
ple actual parameters must be separated by commas.

Note:

1. If the actual parameters are more than the formal parameters, the extra ac-
tual arguments will be discarded.

2. On the other hand, if the actuals are less than the formals, the unmatched
formal arguments will be initialized to some garbage.

G 3. Any mismatch in data types may also result in some garbage values. J

9.8 FUNCTION DECLARATION

Like variables, all functions in a C program must be declared, before they are invoked. A Sfunction
declaration (also known as function prototvpe) consists of four parts.

e Function type (return type)

¢ Function name

¢ Parameter list

¢ Terminating semicolon
They are coded in the following format:

Function-type function-name (parameter list);

This is very similar to the function header line except the terminating semicolon. For example, mul
function defined in the previous section will be declared as:

int mul (int m, int n); /* Function prototype */

258| Programming in ANSI C

Points to note:

1. The parameter list must be separated by commas.

2. The parameter names do not need to be the same in the prototype declaration and the function
definition.
The types must match the types of parameters in the function definition, in number and order.
Use of parameter names in the declaration is optional.
If the function has no formal parameters, the list is wriiten as (void).
The return type is optional, when the function returns int type data.
The retype must be void if no value is returned.
When the declared types do not match with the types in the function definition, compiler will
produce an error.

N ew

oC

Equally acceptable forms of declaration of mul function are:
int mul (int, int);
mul (int a, int b);
mul (int, int);
When a function does not take any parameters and does not return any value, its prototype is written
as:

void display (void);

A prototype declaration may be placed in two places in a program.
1. Above all the functions (including main)
2. Inside a tunction definition.

When we place the declaration above all the functions (in the global declaration section), the
prototype is referred to as a global prototype. Such declarations are available for all the functions in
the program.

When we place 1t in a function definition (in the local declaration section), the prototype is called
a local protorype. Such declarations are primarily used by the functions containing them.

The place ot declaration of a function defines a region in a program in which the function may be
used by other functions. This region is known as the scope of the function. (Scope is discussed later in
this chapter.) It is a good programming style to declare prototypes in the global declaration section
before main. 1t adds flexibility, provides an excellent quick reference to the functions used in the
program, and enhances documentation.

@ Prototypes: Yes or No >

Prototype declarations are not essential. If a function has not been declared
before it is used, C will assume that its details available at the time of linking.
Since the prototype is not available, C will assume that the return type is an
integer and that the types of parameters match the formal definitions. If these
assumptions are wrong, the linker will fail and we will have to change the
program. The moral is that we must always include prototype declarations,
preferably in global declaration section. - j

User-Defined Functions I 259

@ Parameters Everywhere!

[C

Parameters (also known as arguments) are used in three places;

1. In declaration (prototypes)

2. In function cali

3. In function definition.

The parameters used in prototypes and function definitions are called formal
parameters and those used in function calls are called actual parameters. Actual
parameters used in a calling statement may be simple constants, variables or
expressions.

The formal and actual parameters must match exactly in type, order and number.
Their names, however, do not need to match.

J

9.9 CATEGORY OF FUNCTIONS

A function, depending on whether arguments are present or not and whether a value is returned or not,
may belong to one of the following categories.

Category 1: Functions with no arguments and no return values.
Category 2: Functions with arguments and no return values.
Category 3: Functions with arguments and one return value.
Category 4: Functions with no arguments but return a value.
Category S: Functions that return multiple values.

In the sections to follow, we shall discuss these categories with examples. Note that, from now on, we
shall use the term arguments (rather than parameters) more frequently.

.10

NO ARGUMENTS AND NO RETURN VALUES

When a function has no arguments, it does not receive any data from the calling function. Similarly,
when it does not return a value, the calling function does not receive any data from the called func- .
tion. In effect, there is no data transfer between the calling function and the called function. This is
depicted in Fig. 9.3. The dotted lines indicate that there is only a transfer of control but not data.

control
| function1() = ™ function2 ()
% . Noinput
|
j S N AU
1 function2 ()
} _________ . Nooutput |
\ R
. N
“ - control R—

Fig. 9.3 No data communication between functions

260 | Programming in ANSI C

As pointed out earlier, a function that does not return any value cannot be used in an expression. It
can only be used as an independent statement.

Write a program with multiple functions that do not communicate any
~ data between them.
A program with three user-defined functions is given in Fig. 9.4. main is the calling function that
calls printline and value functions. Since both the called functions contain no arguments, there are
no argument declarations. The printline function, when encountered, prints a line with a length of 35
characters as prescribed in the function. The value function calculates the value of principal amount
after a certain period of years and prints the results. The following equation is evaluated repeatedly:
value = principal(1+interest-rate)

Program

/* Function declaration */
void printline (void);
void value (void);

main()

{
printline();
value();
printline();.

}

/* Functionl: printline() */

void printline(void) /* contains no arguments */

{

int i ;

for(i=1; i <= 35; i++)
printf("%c",'-');
printf("\n");
}

/* Function2: value() */

void value(void) /* contains no arguments */
{

int year, period;

float inrate, sum, principal;

printf("Principal amount?");
scanf("%f", &principal);
printf("Interest rate? "),
scanf("%f", &inrate);
printf("Period? "y,

User-Defined Functions :261
scanf("%d", &period);

sum = principal;
year = 1;
while(year <= period)
{
sum = sum *(l+inrate);
year = year +1;
}
printf("\n%8.2f %5.2f %5d %12.2f\n",
principal,inrate,period,sum);

Output
Principal amount? 5000
Interest rate? 0.12
Period? 5
5000.00 0.12 5 8811.71

Fig. 9.4 Functions with no arguments and no return values

[t is important to note that the function value receives its data directly from the terminal. The input
data include principal amount, interest rate and the period for which the final value is to be calcu-
lated. The while loop calculates the final value and the results are printed by the library function
printf. When the closing brace of value() is reached, the control is transferred back to the calling
functionmain. Since everything is done by the value itself there is in fact nothing left to be sent back
to the called function. Return types of both printline and value are declared as void.

Note that no return statement is employed. When there is nothing to be returned, the return
statement is optional. The closing brace of the function signals the end of execution of the function,
thus returning the control, back to the calling function.

9.1 ARGUMENTS BUT NO RETURN VALUES

In Fig. 9.4 the main function has no control over the way the functions receive input data. For
example, the function printline will print the same line each time it is called. Same is the case with
the function value. We could make the calling function to read data from the terminal and pass it on
to the called function. This approach seems to be wiser because the calling function can check for
the validity of data, if necessary, before it is handed over to the called function.

The nature of data communication between the calling function and the called function with
arguments but no return value is shown in Fig. 9.5.

262| Programming in ANSI C

function1 () . Values function 2 (f)
! - of arguments A
L g

[

function 2 (a)

| Noretunvalue | ... :

Fig. 9.5 One-way data communication

We shall modify the definitions of both the called functions to include arguments as follows:

void printline(char ch)

void value(float p, float r, int n)
The arguments ch, p, r, and n are called the formal arguments. The calling function can now send
values to these arguments using function calls containing appropriate arguments. For example, the
function call

value(500,0.12,5)
would send the values 500,0.12 and 5 to the function

void value(float p, float r, int n)
and assign 500 top, 0.12 tor and 5 to n. The values 500, 0.12 and 5 are the actual arguments, which
become the values of the formal arguments inside the called function.

The actual and formal arguments should match in number, type, and order. The values of actual

arguments are assigned to the formal arguments on a one fo one basis, starting with the first argument
as shown in Fig. 9.6.

main ()
{ actual arguments :
{ A .
Function | = -------- s 3 :
call — —4— functionl (al, az, a3, .. , am) F
LT | b
| J& | .
functionl (f1, f2, 3, , fn)
v J
Called) formal arguments :
function—— 1 g‘

Fig. 9.6 Arguments matching berween the function call and the called function

User-Defined Functions |263

We should ensure that the function call has matching arguments. In case, the actual arguments are
more than the formal arguments (m > n), the extra actual arguments are discarded. On the other hand,
if the actual arguments are less than the formal arguments, the unmatched formal arguments are
initialized to some garbage values. Any mismatch in data type may also result in passing of garbage
values. Remember, no error message will be generated.

While the formal arguments must be valid variable names, the actual arguments may be variable
names, expressions, or constants. The variables used in actual arguments must be assigned values
before the function call is made.

Remember that, when a function call is made, only a copy of the values of actual arguments is
passed into the called function. What occurs inside the function will have no effect on the variables
used in the actual argument list.

Example 9.2] Modify the program of Example 9.1 to include the arguments in the

function calls.

The modified program with function arguments is presented in Fig. 9.7. Most of the program is
identical to the program in Fig. 9.4. The input prompt and scanf assignment statement have been
moved from value function to main. The variables principal, inrate, and period are declared in
main because they are used in main to receive data. The function call

value(principal, inrate, period);

passes information it contains to the function value.

The function header of value has three formal arguments p,r, and n which correspond to the
actual arguments in the function call, namely, principal, inrate, and period. On execution of the
function call, the values of the actual arguments are assigned to the corresponding formal argu-
ments. In fact, the following assignments are accomplished across the function boundaries:

p = principal;

r = inrate;

n = period;
Program

/* prototypes */
void printline (char c);
void value (float, float, int);

main()

{
float principal, inrate;
int period;

printf("Enter principal amount, interest");
printf(" rate, and period \n");

scanf ("%f %f %d",&principal, &inrate, &period);
printline('Z');

vatue(principal,inrate,period);

264' Programming in ANSIC
printline('C');
void printline(char ch)

int i ; *

for(i=1; i <= 52; j++)
printf("%c",ch);

printf("\n");

}
void value(float p, float r, int n)
{
int year ;
float sum ;
sum = p ;
year = 1;
while(year <= n)
{
sum = sum * (1+r);
year = year +1;
}
printf("%f\t%f\t%d\t%f\n",p,r,n,sum);
}
Output

Enter principal amount, interest rate, and period

5000 0.12 5
1777717177777777777777777777777777772777777177777727117
5000.000000 0.120000 5 8811.708984

¢Ccceeccceccccccceeccecececececcecececceccceccccecccecccccccccecc

Fig. 9.7 Functions with arguments but no return values

The variables declared inside a function are known as local variables and therefore their values
are local to the function and cannot be accessed by any other function. We shall discuss more about
this later in the chapter.

The function value calculates the final amount for a given period and prints the results as before.
Control is transferred back on reaching the closing brace of the function. Note that the function
does not return any value.

The function printline is called twice. The first call passes the character ‘Z’, while the second
passes the character ‘C’ to the function. These are assigned to the formal argument ch for printing
lines (see the output).

- User-Defined Functions |265

4) Variable Number of Arguments)

Some functions have a variable number of arguments and data types which can-
not be known at compile time. The printf and scanf functions are typical exam-
ples. The ANSI standard proposes new symbol called the ellipsis to handle such
functions. The ellipsis consists of three periods (...) and used as shown below:

double area(float d,...)

(2 Both the function declaration and definition should use ellipsis to indicate that

the arguments are arbitrary both in number and type.

9.12 ARGUMENTS WITH RETURN VALUES :
The function value in Fig. 9.7 receives data from the calling function through arguments, but does not
send back any value. Rather, it displays the results of calculations at the terminal. However, we may
not always wish to have the result of a function displayed. We may use it in the calling function for
further processing. Moreover, to assure a high degree of portability between programs, a function
should generally be coded without involving any I/O operations. For example, different programs
may require different output formats for display of results. These shortcomings can be overcome by
handing over the result of a function to its calling function where the returned value can be used as
required by the program.

A self-contained and independent function should behave like a ‘black box’ that receives a
predefined form of input and outputs a desired vatue. Such functions will have two-way data commu-
nication as shown in Fig. 9.8

function1() | Values function 2 (f)
of arguments {

function2(a) | -

__________________ . Funionresut | retum(e)

] }

Fig. 9.8 Two-way data communication between functions

We shall modify the program in Fig. 9.7 to illustrate the use of two-way data communication
between the calling and the called functions. :

266| Programming in ANSI C

In the program presented in Fig. 9.7 modify the function value, to re-
” turn the final amount calculated to the main, which will display the

required output at the terminal. Also extend the versatility of the func-

tion printline by having it to take the length of the line as an argument.

The modified program with the proposed changes is presented in Fig. 9.9. One major change is the
movement of the printf statement from value to main.

Program

void printline (char ch, int len);
value (float, float, int);

main()

{
float principal, inrate, amount;
int period;
printf{"Enter principal amount, interest");
printf("rate, and period\n");
scanf(%f %f %d", &principal, &inrate, &period);
printline ('*' , 52);
amount = value (principal, inrate, period);
printf("\n%f\t%f\t%d\t%f\n\n",principal,

inrate,period,amount);

printline('=',52);

!

void printline(char ch, int len)

{
int 1;
for (i=1l;i<=len;i++) printf("%c",ch);
printf("\n");

}

value(float p, float r, int n) /* default return type *
{
int year;
float sum;
sum = p; year =-1;
while(year <=n)
{
sum = sum * (1+r);
year = year +1;
}

“return(sum); /* returns int part of sum */

User-Defined Functions |267
Output

Enter principal amount, interest rate, and period
5000 0.12 5

khkhkhkkhhhkkAhkkhkhkkhkkhkhkkhhkdhkhdkkhkhhkbhkhhkhhkhkhdhkkhkhhkkkkhkkxk

5000.000000 0.1200000 5 8811.000000

Fig. 9.9 Functions with arguments and return values

The calculated value is passed on to main through statement:
return(sum);

Since, by default, the return type of value function is int, the ‘integer’ value of sum at this point is
returned to main and assigned to the variable amount by the functional call

amount = value (principal, inrate, period);

The following events occur, in order, when the above function call is executed:

1. The function call transfers the control along with copies of the values of the actual arguments
to the function value where the formal arguments p, r, and n are assigned the actual values of
principal, inrate and period respectively.

. The called function value is executed line by line in a normal fashion until the return(sum);
statement is encountered. At this point, the integer value of sum is passed back to the function-
call in the main and the following indirect assignment occurs:

o

va]ue(brincipa], inrate, period) = sum;

3. The calling statement is executed normally and the returned value is thus assigned to amount,
a float variable.
4. Since amount is a float variable, the returned integer part of sum is converted to floating-
point value. See the output.
Another important change is the inclusion of second argument to printline function to receive the
value of length of the line from the calling function. Thus, the function call

printline('*', 52);

will transfer the control to the function printline and assign the following values to the formal argu-
ments ch, and len;

ch = '*'

len = 52;

Raoturning Float Values

We mentioned earlier that a C function returns a value of the type int as the default case when no
other type is specified explicitly. For example, the function value of Example 9.3 does all calcula-
tions using floats but the return statement

return(sum);

268 I Programming in ANSI C

returns only the integer part of sum. This is due to the absence of the type-specifier in the function
header. In this case, we can accept the integer value of sum because the truncated decimal part is
insignificant compared to the integer part. However, there will be times when we may find it neces-
sary to receive the float or double type of data. For example, a function that calculates the mean or
standard deviation of a set of values should return the function value in either float or double.

In all such cases, we must explicitly specify the return tvpe in both the function definition and the
prototype declaration.

If we have a mismatch between the type of data that the called function returns and the type of data
that the calling function expects, we will have unpredictable results. We must, therefore, be very
careful to make sure that both types are compatible.

Example 9. Write a function power that computes x raised to the power y for inte-

gers x and y and returns double-type value.
Fig. 9.10 shows a power function that returns a double. The prototype declaration
double power(int, int);

appears in main, before power is called.

Program

main()
{
int x,y; /*input data */
double power(int, int);/* prototype declaration*/
printf("Enter x,y:");
scanf("%d %d" , &x,&y);
printf("%d to power %d is %f\n", x,y,power (x,y));

}
double power (int x, int y);

{

double p;

p=1.0; /* x to power zero */

if(y >=0)
while(y-=) /* computes positive powers */
P *=x;

else
while (y++) /* computes negative powers */
P /= x;

return(p); /* returns double type */

Output

User-Defined Functions |269

Enter x,y:16 2
16 to power 2 is 256.000000

Enter x,y:16 -2
16 to power -2 is 0.003906

Fig. 9.10 Power fuctions: Illustration of return of float values

Another way to guarantee that power’s type is declared before it is called in main is to define the
power function before we define main. Power’s type is then known from its definition, so we no
longer need its type declaration in main.

9.13 NO ARGUMENTS BUT RETURNS A VALUE

There could be occasions where we may need to design functions that may not take any arguments but
returns a value to the calling function. A typical example is the getchar function declared in the
header file <stdio.h>. We have used this function earlier in a number of places. The getchar function
has no parameters but it returns an integer type data that represents a character.
We can design similar functions and use in our programs. Example:
int get number(void);
main
{
int m = get number();
printf("%d",m);
}
int get number(void)
{
int number;
scanf("%d", &number);
return(number);

4

9.14 'FUNCTIONS THAT RETURN MULTIPLE VALUES "

Up to now, we have illustrated functions that return just one value using a return statement. That is
because, a return statement can return only value. Suppose, however, that we want to get more infor-
mation from a function. We can achieve this in C using the arguments not only to receive information
but also to send back information to the calling function. The arguments that are used to “send out”
information are called output parameters.

The mechanism of sending back information through arguments is achieved using what are known
as the address operator (&) and indirection operator (*). Let us consider an example to illustrate
this.

void mathoperation (int x, int y, int *s, int *d);
main()

270| Programming in ANSIC

{
int x = 20, y = 10, s, d;
mathoperation(x,y, &s, &d);

printf("s=%d\n d=%d\n", s,d);

}
void mathoperation (int a, int b, int *sum, int *diff)
{
*sum = a+b;
*diff = a-b;
}

The actual arguments x andy are input arguments, s and d are output arguments. In the function call,
while we pass the actual values of x and y to the function, we pass the addresses of locations where
the values of s and d are stored in the memory. (That is why, the operator & is called the address
operator.) When the function is called the following assignments occur:

valueof xtoa

valueof ytob

address of s to sum

address of d to diff
Note that indirection operator * in the declaration of sum and diff in the header indicates these
variables are to store addresses, not actual values of variables. Now, the variables sum and diff point
to the memory locations of's and d respectively.

(The operator * is known as indirection operator because it gives an indirect reference to a vari-
able through its address.)

In the body of the function, we have two statements:

* sum = a+b;
* diff = a-b;

The first one adds the values a and b and the result is stored in the memory location pointed to by
sum. Remember, this memory location is the same as the memory location of's. Therefore, the value
stored in the location pointed to by sum is the value of's.

Similarly, the value of a-b is stored in the location pointed to by diff, which is the same as the
location d. After the function call is impleinented, the value of s is a+b and the value of d is a-b.
Output will be:

s =30

d=10

The variables *sum and *diff are known as pointers and sum and diff as pointer variables. Since
they are declared as int, they can point to locations of int type data.

The use of pointer variables as actual parameters for communicating data between functions is
called “pass by pointers” or “call by address or reference”. (Pointers and their applications are dis-
cussed in detail in Chapter 11).

User-Defined Functions I 271

/ > Rules for Pass by Pointers)

1. The types of the actual and formal arguments must be same.

ro

. The actual arguments (in the function call) must be the addresses of variables
that are local to the calling function.

3. The formal arguments in the function header must be prefixed by the indi-
rection operatior *.

4. In the prototype, the arguments must be prefixed by the symbol *.

5. To access the value of an actual argument in the called function, we must
G use the corresponding formal argument prefixed with the indirection opera-

tor *.

9.15 NESTING OF FUNCTIONS

C permits nesting of functions freely. main can call functionl, which calls function2, which calls

function3, and so on. There is in principle no limit as to how deeply functions can be nested.
Consider the following program:

float ratio (int x, int y, int z);
int difference (int x, int y);
main()
{
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
printf("%f \n", ratio(a,b,c));
}

float ratio(int x, int y, int z)
{
if(difference(y, z))
return(x/(y-z));
else
return(0.0);
}
int difference(int p, int q)
{

if(p != q)
return (1);
else

return(0);
}

The above program calculates the ratio

272] Programming in ANSI C

a
b-c
and prints the result. We have the following three functions:
main()
ratio()
difference()
main reads the values of a, b and ¢ and calls the function ratio to calculate the value a/(b—c¢). This
ratio cannot be evaluated if (b—c) = 0. Theretore, ratio calls another function difference to test
whether the difference (b—c) is zero or not; difference returns 1, if b is not equal to c; otherwise
returns zero to the function ratio. In turn, ratio calculates the value a/(b—c) if it receives 1 and
returns the result in float. In case, ratio receives zero from difference, it sends back 0.0 to main
indicating that (b—<)=0.
Nesting of function calls is also possible. For example, a statement like
P = mul(mul(5,2),6);
is valid. This represents two sequential function calls. The inner function call is evaluated first and
the returned value is again used as an actual argument in the outer function call. If mul returns the

product of its arguments, then the value of p would be 60 (= 5x2x6).
Note that the nesting does not mean defining one function within another. Doing this is illegal.

9.16 RECURSION

When a called function in turn calls another function a process of ‘chaining’ occurs. Recursion is a
special case of this process, where a function calls itself. A very simple example of recursion is
presented below:
main()
{
printf("This is an example of recursion\n")
main();
}
When executed, this program will produce an output something like this:
This is an example of recursion
This is an example of recursion
This is an example of recursion
This is an ex
Execution is terminated abruptly; otherwise the execution will continue indefinitely.
Another useful example of recursion is the evaluation of factorials of a given number. The
factorial of a number n is expressed as a series of repetitive multiplications as shown below:
factorial of n = n(n-1)(n-2)......... 1.
For example,
factorial of 4 = 4x3x2x1 = 24
A function to evaluate factorial of n is as follows:

User-Defined Functions |273

factoriai(int n)
{
int fact;
if (n==1)
return(1);
else
fact = n*factorial(n-1);
return(fact);

}

Let us see how the recursion works. Assume n = 3. Since the value of n is not 1, the statement
fact = n * factorial(n-1);

will be executed with n = 3. That is,
fact = 3 * factorial(2);

will be evaluated. The expression on the right-hand side includes a call to factorial with n = 2. This
call will return the following value:
2 * factorial(1)
Once again, factorial is called with n = 1. This time, the function returns 1. The sequence of opera-
tions can be summarized as follows:
fact = 3 * factorial(2)

=3 * 2 * factorial(1)

=3%2%*1

=6

Recursive functions can be effectively used to solve problems where solution is expressed in terms

of successively applying the same solution to subsets of the problem. When we write recursive func-
tions, we must have an if statement somewhere to force the function to return without the recursive
call being executed. Otherwise, the function will never return.

9.17 PASSING ARRAYS TO FUNCTIONS - - .« o

One-Dimensional Arrays

Like the values of simple variables, it is also possible to pass the values of an array to a function. To
pass a one-dimensional an array to a called function, it is sufficient to list the name of the array,
without any subscripts, and the size of the array as arguments. For example, the call

largest(a,n)
will pass the whole array a to the called function. The called function expecting this call must be
appropriately defined. The largest function header might look like:

float largest(float array| |, int size)
The function largest is defined to take two arguments, the array name and the size of the array to
specify the number of elements in the array. The declaration of the formal argument array is made as
follows:

float array[1;

274 Programming in ANSIC

The pair of brackets informs the compiler that the argumentarray is an array of numbers. It is not
necessary to specify the size of the array here.

Let us consider a problem of finding the largest value in an array ot elements. The program is as
follows:

main{)
{
float largest(float a[], int n);
float value[d4] = {2.5,-4.75,1.2,3.67};
printf("%f\n", largest(value,4));
}
float largest(float a[], int n)
{
int i;
float max;
max = a[0];
for(i = 1; 1 < n; i++)
if(max < a[i])
max = a[i];
return(max);

When the function call largest(value,4) is made, the values of all elements of array value become
the corresponding elements of array a in the called function. The largest function finds the largest
value in the array and returns the result to the main.

In C, the name of the array represents the address of its first element. By passing the array name,
we are, in fact, passing the address of the array to the called function. The array in the called function
now refers to the same array stored in the memory. Therefore, any changes in the array in the called
function will be reflected in the original array.

Passing addresses of parameters to the functions is referred to as pass by address (or pass by
pointers). Note that we cannot pass a whole array by value as we did in the case of ordinary variables.

Example 9. Write a program to calculate the standard deviation of an array of

values. The array elements are read from the terminal. Use functions
to calculate standard deviation and mean.

Standard deviation of a set of n values is given by

Where X is the mean of the values.

User-Defined Functions |27 5

Program

#include <math.h>

#define SIZE 5

float std dev(float a[], int n);
float mean (float a[], int n);

main()

{
float value[SIZE];
int i3

printf("Enter %d float values\n", SIZE);
for (i=0 ;i < SIZE ; i++)
scanf("%f", &valuel[i]);
printf("Std.deviation is %f\n", std_dev(value,SIZE));
}

float std dev(float a[], int n)
{

int i;
float x, sum = 0.0;
x = mean (a,n);
for(i=0; i < n; i++)
sum += (x-ali])*(x-a[i]);
return(sqrt(sum/(float)n));
]
float mean(float a[],int n)

{
int i ;
float sum = 0.0;
for(i=0 ; i < n ; i++)
sum = sum + a[i];
return(sum/(float)n);

Output
Enter 5 float values
35.0 67.0 79.5 14.20 55.75

Std.deviation is 23.231582

Fig. 9.11 Passing of arrays to a function

276| Programming in ANSI C

A multifunction program consisting of main, std_dev, and mean functions is shown in Fig. 9.11.
main reads the elements of the array value from the terminal and calls the function std_dev to print
the standard deviation of the array elements. Std_dev, in turn, calls another function mean to supply
the average value of the array elements.

Both std_dev and mean are defined as floats and therefore they are declared as floats in the
global section of the program.

C} Three Rules to Pass an Array to a Function)

1. The function must be calied by passing only the name of the array.

2. In the function definition, the formal parameter must be an array type; the
size of the array does not need to be specified.

3. The function prototype must show that the argument is an array.

When dealing with array arguments, we should remember one major distinction. It a function
changes the values of the elements of an array, then these changes will be made to the original array
that passed to the function. When an entire array is passed as an argument, the contents of the array
are not copied into the formal parameter array; instead, information about the addresses of array
elements are passed on to the function. Therefore, any changes introduced to the array elements are
truly reflected in the original array in the calling function. However, this does not apply when an
individual element is passed on as argument. Example 9.6 highlights these concepts.

Example 9.6| Write a program that uses a function to sort an array of integers.

5>

A program to sort an array of integers using the functionsort() is given in Fig. 9.12. Its output clearly
shows that a function can change the values in an array passed as an argument.

Program

void sort(int m, int x{ 1);
main()
{
int i;
int marks[5] = {40, 90, 73, 81, 35};

printf("Marks before sorting\n");
for(i = 0; i < 5§; i++)

printf("sd ", marks[i]);
printf(“\n\n");

sort (5, marks);

printf("Marks after sorting\n");
for(i = 0; i < 5; i++)

printf("%4d", marks[i]);
printf("\n");

User-Defined Functions I 277

}
void sort(int m, int x[])
{
int 1, j, t;
for(i = 15 1 <= m-1; i++)
for(j = 1; J <= m-i; j++)
if(x[3-1] >= x[j])
{
t = x[j-11;
x[3-1] = x[31;
x[3] = t;
}
}
OQutput
Marks before sorting
40 90 73 81 35
Marks after sorting
35 40 73 81 90

Fig. 9.12 Sorting of array elements using a function

Two-Dimensional Arrays

Like simple arrays, we can also pass multidimensional arrays to functions. The approach is similar to
the one we did with one-dimensional arrays. The rules are simple.
1. The function must be called by passing only the array name.
2. Inthe function detinition, we must indicate that the array has two dimensions by including two
sets of brackets.
3. The size of the second dimension must be specitied.
4. The prototype declaration should be similar to the function header.
The function given below calculates the average of the values in a two-dimensional matrix.
double average(int x[J[N], int M, int N)
{
int i, J;
double sum = 0.0;
for (i=0; i<M; i++)
for(j=1; j<N; j++)
sum += x[1][];
return(sum/(M*N));
}

This function can be used in a main function as illustrated below:

278| Programming in ANSI C

main{)
{
int M=3, N=2;
double average(int [] [N], int, int);
double mean;
int matrix [M][N]=

i } b4

mean = average(matrix, M, N);

P15 AL

S e S TO FUNCTIONS

i
i,
-
;

Because the strings are treated as character arrays in C, the rules for passing strings to functions are
very similar to those for passing arrays to functions.
Basic rules arc:
[. The string to he passed must be declared as a formal argument of the function when it is
detined. Exarmple:
void display(char item_name| |)

2. The function prototype must show that the argument is a string. For the above function
definition. the prototype can be written as
void display(char str[1);
3. A call o the function must have a string array name without subscripts as its actual argument.
Example
display (names);
where names is a properly declared string array in the calling function.
We must note here that. like arrays. strings in C cannot be passed by value to functions.

User-Detined bFunctions |279

@ Pass by Value versus Pass by Pointers)

The technique used to pass data from one function to another is known as param-
eter passing. Parameter passing can he done in two wavs.

e Pass by value (also known as call by value)
e Pass by Pointers {also known as call by pointers)

in pass by value, values of actual parameters are copied 1o the variables in the
parameter list of the called function. The called function works on the copy and
not on the original values of the actual parameters. This ensures that the original
data in the calling function cannot be changed accidentally.

In pass by pointers (also known as pass by address), the memory addresses of the
variables rather than the copies of values are sent fo the catled function. In this
case, the called function directly works on the data in the calling function and
the changed values are available in the calling function for its use.

Pass by pointers method is often used when manipulating arrays and strings.
This method is also used when we require multiple values 10 be returned by the
called function. J

9.19 THE SCOPE, VISIBILITY AND LIFETisi L3
VARIABLES

Variables in C differ in behaviour from those in most other languages. For example, in a BASIC
program. a variable retains its value throughout the program. It is not always the case in C. 1t all
depends on the ‘storage’ class a variable may assume.
In C not only do all variables have a data type. they also have astorage cluss. The tollowing variable
storage classes are most relevant to functions:

1. Automatic variables

2. External variables

3. Static variables

4. Register variables

We shall briefly discuss the scope. visibilin: and longevitv of each of the above class of variables.
The scope of variable determines over what region of the program a variable is actually available for
use (‘active’). Longevity refers to the period during which a variable retains a given value during
execution of a program (‘alive’). So longevity has a direct effect on the utility of a given variable. The
visibiliny refers to the accessibility of a variable from the memory.

The variables may also be broadly categorized. depending on the place of their declaration. as
internal (local) or external (global). Internal variables are those which are declared within a particu-
lar function, while external variables are declared outside of any function.

It is very important to understand the concept of storage classes and their utility in order to develop
efficient multifunction programs.

280| Programming in ANSI C
Automatic Variabhles

Automatic variables are declared inside a function in which they are to be utilized. They are created
when the function is called and destroyed automatically when the function is exited, hence the name
automatic. Automatic variables are therefore private (or local) to the function in which they are
declared. Because of this property, automatic variables are also referred to as local or internal vari-
ables.

A variable declared inside a function without storage class specification is, by default, an auto-
matic variable. For instance, the storage class of the variable number in the example below is auto-
matic.

main()
{

int number;

We may also use the keyword auto to declare automatic variables explicitly.
main()
{

auto int number;

One important feature of automatic variables is that their value cannot be changed accidentally by
what happens in some other function in the program. This assures that we may declare and use the
same variable name in different functions in the same program without causing any confusion to the
compiler.

Example 9. Write a multifunction to illustrate how automatic variables work.

A program with two subprograms functionl and function2 is shown in Fig. 9.13. m is an auto-
matic variable and it is declared at the beginning of each function. m is initialized to 10, 100, and
1000 in functionl, function2, and main respectively.

When executed, main calls function2 which in turn calls functionl. When main is active, m =
1000; but when function2 is called. the main’s m is temporarily put on the shelf and the new local m
=100 becomes active. Similarly, when function1 is called, both the previous values of m are put on
the shelf and the latest value of m (=10) becomes active. As soon as functionl (m=10) 1s finished,
function2 (m=100) takes over again. As soon it is done, main (m=1000) takes over. The output
clearly shows that the value assigned to m in one function does not affect its value in the other
functions; and the local value of m is destroyed when it leaves a function.

Program

void functionl(void);
void function2(void);
main()

{

User-Defined Functions | 281

int m = 1000;
function2();

printf("%d\n",m); /* Third output */
}

void functionl(void)

{
int m = 10;

printf("%d\n",m); /* First output */

void function2(void)

{
int m = 100;

functionl();
printf("%d\n",m); /* Second output */

OQutput
10
100
1000

Fig. 9.13 Working of automatic variables

There are two consequences of the scope and longevity of autoe variables worth remembering.
First, any variable local to main will normally alive throughout the whole program, although it is
active only in main. Secondly, during recursion, the nested variables are unique auto variables, a
situation similar to function-nested auto variables with identical names.

I-xterrnal Variables

Variables that are both alive and active throughout the entire program are known as external vari-
ables. They are also known as global variables. Unlike local variables, global variables can be
accessed by any function in the program. External variables are declared outside a function. For
example, the external declaration of integer number and float length might appear as:

int number;
float tength = 7.5;
main()

{

282 Programming in ANSI C

}
functionl()

The variables number and length are available for use in all the three functions. In case a local
variable and a global variable have the same name, the local variable will have precedence over the
global one in the function where it is declared. Consider the following example:

int count;

main()

function()
{
int count = 0;
count = count+1;
}
When the function references the variable count, it will be referencing only its local variable, not the
global one. The value of count in main will not be affected.

Example 9.8] Write a multifunction program to illustrate the properties of global vari-
"""" ables.

A program to illustrate the properties of global variables is presented in Fig. 9.14. Note that variable
x is used in all functions but none except fun2, has a definition for x. Because x has been declared
‘above’ all the functions, it is available to each function without having to pass x as a function
argument. Further, since the value of x is directly available, we need not use return(x) statements in
funl and fun3. However, since fun2 has a definition of'x, it returns its local value of x and therefore
uses a return statement. In fun2, the global x is not visible. The local x hides its visibility here.

Program
int funl(void);

int fun2(void);
int fun3(void);

User-Defined Functions

| 283

int x ; /* global */
main()
{
x =10 ; /* global x */
printf("x = zd\n", x);
printf("x = %d\n", funl());
printf("x = zd\n", funz());
printf("x = zd\n", fun3());
}
funl(void)
{
x = x + 10 ;
}
int fun2{void)
{
int x ; /* local */
x =13
return (x);
}
fun3(void)
{
x =x + 10 ; /* global x */
}
Output
x = 10
x = 20
x =1
x = 30
Fig. 9.14 Illustration of properties of global variables

Once a variable has been declared as global, any function can use it and change its value. Then,
subsequent functions can reference only that new value.

©

Global Variables as Parameters

D

the called function.

e A function that uses global variables suffers from reusability.

Since all functions in a program source file can access global variables, they can
‘be used for passing values between the functions. However, using global vari-
ables as parameters for passing values poses certain problems.

e The values of global variables which are sent to the called function may be
changed inadvertently by the called function.
e Functions are supposed to be independent and isolated modules. This char-
acter is lost, if they use global variables.
e It is not immediately apparent to the reader which values are being sent to

284| Programmingin ANSIC

One other aspect of a global variable is that it is available only from the point of declaration to the
end of the program. Consider a program segment as shown below:

main()
{
y = 5

}

int y; /* global declaration */
funcl()

{

y = y+l;

}

We have a problem here. As far as main is concerned, y is not defined. So. the compiler will issue

an error message. Unlike local variables, global variables are initialized to zero by default. The
statement

y = y+l;
in fun1 will, therefore, assign 1 to y.

External Declaration

In the program segment above, the main cannot access the variable y as it has been declared after the
main function. This problem can be solved by declaring the variable with the storage class extern.
For example:

main()
{

extern int y; /* external declaration */

}
funcl()

{

extern int y; /* external declaration */

}
int y; /* definition */

Although the variable y has been defined after both the functions, the external declaration of y
inside the functions informs the compiler that y is an integer type defined somewhere else in the
program. Note that extern declaration does not allocate storage space for variables. In case of arrays.
the definition should include their size as well.

Example:

User-Defined Functions | 285
main()
{ int 1,
void print out(void);
extern float height [1;

print out();

}

void print_out(void)

{
extern float height [];
int i;

}
float height{SIZE];

An extern within a function provides the type information to just that one function. We can pro-
vide type information to all functions within a file by placing external declarations before any of
them.

Example:

extern float height[];
main()

{
int i;
void print out(void);

print_out();

}
void print_out(void)
{
int 1i;
}

float height[SIZE];

The distinction between definition and declaration also applies to functions. A function is defined
when its parameters and function body are specified. This tells the compiler to allocate space for the
function code and provides type information for the parameters. Since functions are external by de-
fault, we declare them (in the calling functions) without the qualifier extern. Therefore, the declara-
tion

void print_out(void);

1s equivalent to

286] Programmingin ANSIC

extern void print_out(void);

Function declarations outside of any function behave the same way as variable declarations.

Static Variables

As the name suggests, the value of static variables persists until the end of the program. A variable
can be declared static using the keyword static like

static int x;
static float y;

A static variable may be either an internal type or an external type depending on the place of
declaration.

Internal static variables are those which are declared inside a function. The scope of internal static
variables extend up to the end of the function in which they are defined. Therefore, internal static
variables are similar to auto variables, except that they remain in existence (alive) throughout the
remainder of the program. Therefore, internal static variables can be used to retain values between
function calls. For example. it can be used to count the number of calls made to a function.

Example 9.9] Write a program to illustrate the properties of a static variable.

>

The program in Fig. 9.15 explains the behaviour of a static variable.

Program

void stat(void);

main ()

{
int i
for(i=1; i<=3; i++)
stat();

}

void stat(void)

{

static int x = 03

X = x+1;
printf("x = %d\n", x);

OQutput

Fig. 9.15 Illustration of static variable

User-Defined Functions |287

A static variable is initialized only once, when the program is compiled. It is never initialized
again. During the first call to stat, x is incremented to 1. Because x is static, this value persists and
therefore, the next call adds another 1 to x giving it a value of 2. The value of x becomes three when
the third call is made.

Had we declared x as an auto variable, the output would have been:

x=1
=1
x=1

This is because each time stat is called, the auto variable x is initialized to zero. When the func-
tion terminates, its value of 1 1s lost.

An external static variable is declared outside of all functions and is available to all the functions
in that program. The difference between a static external variable and a simple external variable is
that the static external variable is available only within the file where it is defined while the simple
external variable can be accessed by other files.

It is also possible to control the scope of a function. For example, we would like a particular
function accessible only to the functions in the file in which it is defined, and not to any function in
other files. This can be accomplished by defining ‘that’ function with the storage class static.

Register Variables

We can tell the compiler that a variable should be kept in one of the machine’s registers, instead of
keeping in the memory (where normal variables are stored). Since a register access is much faster
than a memory access, keeping the frequently accessed variables (e.g., loop control variables) in the
register will lead to faster execution of programs. This is done as follows:

register int count;

Although. ANSI standard does not restrict its application to any particular data type, most compil-
ers allow only int or char variables to be placed in the register.

Since only a few variables can be placed in the register, it is important to carefully select the
variables for this purpose. However, C will automatically convert register variables into non-regis-
ter variables once the limit is reached.

Table 9.1 summarizes the information on the visibility and lifetime of variables in functions and
files.

Table 9.1 Scope and Lifetime of Variables

Storage Where declared Visibility Lifetime

Class (Active) (Alive)

None Before all functions Entire file plus Entire
in a file (may be other files where program
initialized) variable is dec- (Global)

lared with extern

(Contd.}

288| Programming in ANSI C

Storage Where declared Visibility Lifetime
Class (Active) (Alive)
extern Before all functions Entire file plus Giobal
in a file (cannot be other files where
initialized) variable is declared

extern and the file
where originally
declared as global.

static Before all functions Only in that file Global
in a file
None or Inside a function (or Only in that Until end of
auto a block) function or block function or
block
register Inside a function or Only in that Until end of
block function or block function or block
static Inside a function Only in that function Global
Nested Blocks

A set of statements enclosed in a set of braces is known a block or a compound statement. Note that
all functions including the main use compound statement. A block can have its own declarations and
other statements. It is also possible to have a block of such statements inside the body of a function or
another block, thus creating what is known as nested blocks as shown below:

main()
{
int a=20;
int b=10;
..... - outer
{ block
int a=0; Inner
int c=a + b; block
) e
b = a;
} -«

When this program is executed, the value ¢ will be 10, not 30. The statement b = a; assigns a value
0f20 to b and not zero. Although the scope of a extends up to the end of main it is not “visible” inside
the inner block where the variable a has been declared again. The inner a hides the visibility of the
outer a in the inner block. However, when we leave the inner block, the inner a is no longer in scope
and the outer a becomes visible again.

Remember, the variable b is not re-declared in the inner block and therefore it is visible in both the
blocks. That is why when the statement

int c = a + b;

User-Defined Functions |289

Is evaluated, a assumes a values of 0 and b assumes a value of 10.
Although main’s variables are visible inside the nested block, the reverse is not true.

G

Scope Rules

Rul
1.
2.

A

Scope

The region of a program in which a variable is available for use.

Visibility

The program’s ability to access a variable from the memory.

Lifetime

The lifetime of a variable is the duration of time in which a variable exists in the
memory during execution.

es of use
The scope of a global variable is the entire program file.

The scope of a local variable begins at point of declaration and ends at the
end of the block or function in which it is declared.

. The scope of a formal function argument is its own function.

The lifetime (or longevity) of an auto variable declared in main is the entire
program execution time, although its scope is only the main function.

. The life of an auto variable declared in a function ends when the function is

exited.

A static local variable, although its scope is limited to its function, its lifetime
extends till the end of program execution.

. All variables have visibility in their scope, provided they are not declared

again.

If a variable is redeclared within its scope again, it loses its visibility in the
scope of the redeclared variable.

J

$.20 MULTIFILE PROGRAMS

So far we have been assuming that all the functions (including the main) are defined in one file.
However, in real-life programming environment, we may use more than one source files which may
be compiled separately and linked later to form an executable object code. This approach is very
useful because any change in one file does not affect other files thus eliminating the need for
recompilation of the entire program.

Multiple source files can share a variable provided it is declared as an external variable appropri-
ately. Variables that are shared by two or more files are global variables and therefore we must

292| Programming in ANSI C

B B BR B B BRR

Where more functions are used, they may be placed in any order.

A global variable used in a function will retain its value for future use.

A local variable defined inside a function is known only to that function. It is
destroyed when the function is exited.

A global variable is visible only from the point of its declaration to the end of the
program.

When a variable is redeclared within its scope either in a function or in a block,
the original variable is not visible within the scope of the redeclared variable.
A local variable declared static retains its value even after the function is exited.
Static variables are initialized at compile time and therefore they are initialized
only once.

Use parameter passing by values as far as possible to avoid inadvertent changes
to variables of calling function in the called function.

Although not essential, include parameter names in the prototype declarations
for documentation purposes.

Avoid the use of names that hide names in outer scope.

CASE STUDY

Calculation of Area under a Curve

One of the applications of computers in numerical analysis is computing the area under a curve. One
simple method of calculating the area under a curve is to divide the area into a number of trapezoids
of same width and summing up the area of individual trapezoids. The area of a trapezoid is given by

Area=0.5"(hl1 +h2)"b

where hl and h2 are the heights of two sides and b is the width as shown in Fig. 9.18.

f(x)

'/

A TN

hy h,

A X
Fig. 9.18 Area under a curve

The program in Fig. 9.20 calculates the area for a curve of the function

User-Defined Functions |293

f(x) = x>+ 1
between any two given limits, say, A and B.

Input

Lower limit (A)
Upper limit (B)
Number of trapezoids

Output

Total area under the curve between the given limits.
Algorithm

Input the lower and upper limits and the number of trapezoids.
Calculate the width of trapezoids.

Initialize the total area.

Calculate the area of trapezoid and add to the total area.

Repeat step-4 until all the trapezoids are completed.

. Print total area.

The algorithm is implemented in top-down modular form as in Fig. 9.19.

O\l‘hhwl\)'—‘

(R ﬁn—4;_a rea

(Tu;ctton_x" i trap_area

Fig. 9.19 Modular chart

The evaluation of f(x) has been done using a separate function so that it can be easily modified to
allow other functions to be evaluated.

The output for two runs shows that better accuracy is achieved with larger number of trapezoids.
The actual area for the limits 0 and 3 is 12 units (by analytical method).

Program
#include <stdio.h>
float start point, /* GLOBAL VARIABLES */
end point,
total area;
int numtraps;
main()
{
void input(void);
float find area(float a,float b,int n); /* prototype */

294| Programming in ANSIC

print("AREA UNDER A CURVE");
input();
total area = find area(start point, end point, numtraps);
printf("TOTAL AREA = %f", total area);
}

void input(void)

{
printf("\n Enter lower limit:");
scanf("%f", &start _point);
printf("Enter upper limit:");
scanf("%f", &end point);
printf("Enter number of trapezoids:");
scanf("%d", &numtraps);

}

float find_area(float a, float b, int n)

{

float base, lTower, hl, h2; /* LOCAL VARIABLES */
float function x(float x); /* prototype */
float trap area(float hl,float h2,float base);/*prototype*/

base = (b-1)/n;
Tower = a;

for(lower =a; lower <= b-base; lower = lower + base)

{
hl = function x(lower);
hl = function x(lower + base);
total_area += trap_area(hl, h2, base);
}

return(total _area);
float trap_area(float height 1,float height 2,float base)
{
float area; /* LOCAL VARIABLE */
area = 0.5 ° (height_1 + height 2) * base;
return(area);
}

float function x(float x)

{
/¥ F(X) =X *X+ 1%
return(x*x + 1);

}

Output

AREA UNDER A CURVE

User-Defined Functions |29S

Enter lower limit: O

Enter upper limit: 3

Enter number of trapezoids: 30
TOTAL AREA = 12.005000

AREA UNDER A CURVE

Enter lower limit: O

Enter upper limit: 3

Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Fig. 9.20 Computing area under a curve

REVIEW QUESTIONS

9.1 State whether the following statements are true or false.

(a)
(b)
(¢)
(d)
(e)

()
(8)
(h)
(1)

()
(k)

M
(m)
(n)
(0)
(p)
(9)

(r)
(s)

(t)

C functions can return only one value under their function name.

A function in C should have at least one argument.

A function can be defined and placed before the main function.

A function can be defined within the main function.

An user-defined function must be called at least once; otherwise a warning message will
be issued.

Any name can be used as a function name.

Only a void type function can have void as its argument.

When variable values are passed to functions, a copy of them are created in the memory.
Program execution always begins in the main function irrespective of its location in the
program.

Global variables are visible in all blocks and functions in the program.

A function can call itself.

A function without a return statement is illegal.

Global variables cannot be declared as auto variables.

A function prototype must always be placed outside the calling function.

The return type of a function is int by default.

The variable names used in prototype should match those used in the function definition.
In parameter passing by pointers, the formal parameters must be prefixed with the symbol
* in their declarations.

In parameter passing by pointers, the actual parameters in the function call may be
variables or constants.

In passing arrays to functions, the function call must have the name of the array to be
passed without brackets.

In passing strings to functions, the actual parameter must be name of the string post-fixed
with size in brackets.

9.2 Fill in the blanks in the following statements.

296| Programming in ANSI C

(a) The parameters used in a function call are called

(b) A variable declared inside a function is called

(c) By default, is the return type of a C function.

(d) In passing by pointers, the variables of the formal parameters must be prefixed with
in their declaration.

(e) Inprototype declaration, specifying _is optional.

() refers to the region where a variable is actually available for use.

(g) A function that calls itself is known as a function.

(h) Ifalocal variable has to retain its value between calls to the function, it must be declared
as .

(1) A aids the compiler to check the matching between the actual arguments and
the formal ones.

(j) A variable declared inside a function by default assumes storage class.

9.3 The main is a user-defined function. How does it differ from other user-defined functions?

9.4 Describe the two ways of passing parameters to functions. When do you prefer to use each of
them?

9.5 What is prototyping? Why is it necessary?
9.6 Distinguish between the following:
(a) Actual and formal arguments
(b) Global and local variables
(¢) Automatic and static variables
(d) Scope and visibility of variables
(e) & operator and * operator
9.7 Explain what is likely to happen when the following situations are encountered in a program.
(a) Actual arguments are less than the formal arguments in a function.
(b) Data type of one of the actual arguments does not match with the type of the
corresponding formal argument.
(c) Data type of one of the arguments in a prototype does not match with the type of the
corresponding formal parameter in the header line.
(d) The order of actual parameters in the function call is different from the order of formal
parameters in a function where all the parameters are of the same type.
(e) The type of expression used in return statement does not match with the type of the
function.
9.8 Which of the following prototype declarations are invalid? Why?
(a) int (fun) void;
(b) double fun (void)
(c) float fun (x, y, n);
(d) void fun (void, void);
(e) int fun (int a, b);
(f) fun (int, float, char);
(g) void fun (int a, int &b);
9.9 Which of the following header lines are invalid? Why?
(a) float average (float x, float y, float z);
(b) double power (double a, int n - 1)

User-Defined Functions | 297

(c) int product (int m, 10)
(d) double minimum (double x; double y;)
(e) int mul (int x, y)
(f) exchange (int *a, int *b)
(g) void sum (int a, int b, int &c)
9.10 Find errors, if any, in the following function definitions:
(a) void abc (int a, int b)
{

int c;
return (c);
}

(b) int abc (int a, int b)
{

}
(c) int abc (int a, int b)
{
double ¢ = a + b;
return (c);
}
(d) void abc (void)
{

return;
}
(e) int abc(void)
{
return;
}

9.11 Find errors in the following function calls:
(a) void xyz ();
(b) xyx (void);
(c) xyx (int x, int y);
(d) xyzz ();
(e) xyz () + xyz ()3
9.12 A function to divide two floating point numbers is as follows:
divide (float x, float y)
{

}

return (x / y);

298 Programming in ANSI C

What will be the value of the following function calls”
(a) divide (10.2)
(by divide (9,2
(¢) divide (4.5.1.3)
(d) divide (2.0.3.0)
9.13 What will be the cffect on the above function calls if we change the header line as follows:
(a) intdivide (int x, int y)
(b) double divide (float x, float y)
9.14 Determine the output of the following program?
int prod(int m, int n);

main ()

{
int x = 10;
int y = 20;
int p, q;

p = prod (x,y);
q = prod (p, prod (x,z));
printf ("%d %d\n", p,q);

}
int prod(int a, int b)
{
return (a * b);
!

)
9.15 What will be the output of the follow ing program?
void test (int *a);

main ()
{
int x = 50;
test (&x);
printf("zd\n", x);
}
void test (int *a);
{
*a = *a + 50;
}

9.16 The function test is coded as follows:
int test (int number)
{
int m, n = 0;
while (number)

{
m = number % 10;
if (m% 2)
n=n+1;
number = number /10;
}

return (n);

User-Defined Functions |299

What will be the values of x and y when the following statements are executed?
int x = test (135);
int y = test (246);

PROGRAMMING EXERCISES

9.1

9.2

9.4

9.5

9.6

9.7

9.8

9.9

Write a function exchange to interchange the values of two variables, say x and y. Illustrate
the use of this function, in a calling function. Assume that x and y are defined as global
variables.

Write a function space(x) that can be used to provide a space of x positions between two
output numbers. Demonstrate its application.

Use recursive function calls to evaluate

X3 X5 X7
fix)=x— "+ = - T ...

3! s
Ann_order polynomial can be evaluated as follows:
P=(... (((ayx+a))x+a,)xtay)x+..+ta.)

Write a function to evaluate the polynomial, using an array variable. Test it using a main
program.
The Fibonacci numbers are defined recursively as follows:

F =
F,=1
Fni’ Fn 1+F n-2> N >12

Write a function that will generate and print the first n Fibonacci numbers. Test the function
torn=35, 10, and 5.

Write a function that will round a floating-point number to an indicated decimal place. For
example the number 17.457 would yield the value 17.46 when it is rounded off to two decimal
places.

Write a function prime that returns 1 if its argument is a prime number and returns zero
otherwise.

Write a function that will scan a character string passed as an argument and convert all lower-
case characters into their uppercase equivalents.

Develop a top_down modular program to implement a calculator. The program should request
the user to input two numbers and display one of the following as per the desire of the user:
(a) Sum ofthe numbers

(b) Difference of the numbers

(¢) Product of the numbers

(d) Division of the numbers

Provide separate functions for performing various tasks such as reading, calculating and
displaying. Calculating module should call second level modules to perform the individual
mathematical operations. The main function should have only function calls.

300
9.10

9.11
9.12
9.13

9.14

9.15

Programming in ANSI C

Develop a modular interactive program using functions that reads the values of three sides of
a triangle and displays either its area or its perimeter as per the request of the user. Given the
three sides a, b and c.

Perimeter=a+b+c¢

Area = ,/(s—a) (s—b) (s-¢)
where s = (at+b+c)/2

Write a function that can be called to find the largest element of an m by n matrix.
Write a function that can be called to compute the product of two matrices of size m by n and
n by m. The main function provides the values for m and n and two matrices.
Design and code an interactive modular program that will use functions to a matrix of m by n
size, compute column averages and row averages, and then print the entire matrix with aver-
ages shown in respective rows and columns.
Develop a top-down modular program that will perform the following tasks:

(a) Read two integer arrays with unsorted elements.

(b) Sort them in ascending order

(c) Merge the sorted arrays

(d) Print the sorted list
Use functions for carrying out each of the above tasks. The main function should have only
function calls.
Develop your own functions for performing following operations on strings:

(a) Copying one string to another

(b) Comparing two strings

(c) Adding a string to the end of another string

Write a driver program to test your functions.

